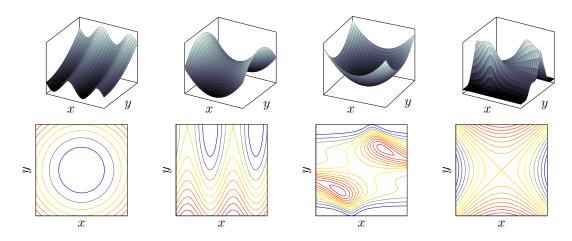
TD_{20} – Fonctions de plusieurs variables

Exercice 1 Lecture graphique

Pour chacune des fonctions tracées ci-dessous, lui associer ses lignes de niveau.



Exercice 2 *

Pour chacune des fonctions suivantes, déterminer son ensemble de définition, justifier qu'elle est de classe \mathcal{C}^1 sur son ensemble de définition, et calculer son gradient.

1.
$$a:(x,y) \mapsto x^2y + x^2y^2 + 2xe^y$$

2.
$$b: (x, y) \mapsto e^x + e^y - e^{xy}$$

3.
$$c:(x,y) \mapsto \ln(x^2 + y^4 + 2x^2y^2 + 3)$$

4.
$$d:(x,y) \mapsto \cos(x+y) + \sin(x-y)$$

5.
$$e:(x,y)\mapsto \frac{xy}{1+x^2+y^2}$$

6.
$$f:(x,y)\mapsto \frac{\mathrm{e}^{xy}}{\cos(xy)+2}$$

7. $g:(x,y)\mapsto x\cos(y)+y\cos(x)$

7.
$$q:(x,y)\mapsto x\cos(y)+y\cos(x)$$

8.
$$h:(x,y)\mapsto\arctan\left(\frac{x^2}{1+y^2}\right)$$

9.
$$i: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto xye^{-x^2+2y}$$

10.
$$j: \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto xye^z + xze^y + yxe^x$$

11.
$$k: \mathbb{R}^n \to \mathbb{R}, (x_1, \dots, x_n) \mapsto (x_1^2 + \dots + x_n^2) e^{-(x_1^2 + \dots + x_n^2)}$$
.

Exercice 3

On définit f sur \mathbb{R}^3 par : $f(x, y, z) = \sin^2 x + \cos^2 y + z^2$.

- 1. Justifier que f est de classe \mathscr{C}^1 sur \mathbb{R}^3 .
- 2. Déterminer le développement limité d'ordre 1 de f en un point $A = (x_0, y_0, z_0)$.

Exercice 4

- 1. Soit $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $\varphi(x,y) = (x-y,x+y)$ où $f \in \mathscr{C}^1(\mathbb{R}^2,\mathbb{R})$. Déterminer $\frac{\partial f \circ \varphi}{\partial x}$ et $\frac{\partial f \circ \varphi}{\partial y}$.
- 2. Soit $\varphi: \mathbb{R} \to \mathbb{R}$, $f: \mathbb{R} \to \mathbb{R}$ deux fonctions de classe \mathscr{C}^2 sur \mathbb{R} et $F: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$F(x,y) = f(x + \varphi(y)).$$

Vérifier que F est de classe \mathscr{C}^2 sur \mathbb{R}^2 et montrer que pour tout $(x,y) \in \mathbb{R}^2$:

$$\frac{\partial^2 F}{\partial x^2} \frac{\partial F}{\partial y} - \frac{\partial^2 F}{\partial x \partial y} \frac{\partial F}{\partial x} = 0.$$

Exercice 5 **

Soit
$$f: \mathbb{R}^3 \to \mathbb{R}$$
 définie par $f(x,y,z) = \begin{cases} \frac{xyz}{\sqrt{x^2 + y^2 + z^2}} & \text{si } (x,y,z) \neq (0,0,0) \\ 0 & \text{sinon} \end{cases}$

- 1. Montrer que $\forall (x, y, z) \in \mathbb{R}^3, |f(x, y, z)| \leq |yz|$.
- 2. En déduire que f est continue sur \mathbb{R}^3 .

Exercice 6 Étude d'un extremum par variation de fonctions

Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = x^4 + y^4 - 4xy$.

- 1. Montrer que f n'admet pas de maximum.
- 2. On se propose de montrer que f possède un minimum.
 - (a) En considérant f(-x, -y), montrer qu'on peut se restreindre à $y \ge 0$.
 - (b) Pour $y \ge 0$ fixé, montrer que la fonction $x \mapsto f(x,y)$ admet un minimum noté g(y).
 - (c) Étudier les variations de $y \mapsto g(y)$ et en déduire que f admet un minimum, et préciser le(s) point(s) où ce minimum est atteint.

Exercice 7 **

Soit $g: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $g(x,y) = e^x(x+y^2+e^x)$. On considère également la fonction f, définie sur \mathbb{R} par $f(t) = 1 + t + 2e^t$.

- 1. Montrer que g est \mathcal{C}^1 sur \mathbb{R}^2 , et calculer ses dérivées partielles.
- 2. Montrer qu'il existe un unique réel α tel que $f(\alpha) = 0$. Justifier que $\alpha \in [-2, -1]$.
- 3. En déduire que g possède un unique point critique, que l'on exprimera en fonction de α .
- 4. Déterminer la nature locale de ce point critique
- 5. En remarquant que pour tout $y \in \mathbb{R}$, $g(x,y) \geqslant g(x,0)$, montrer que g possède un minimum global.

Exercice 8 ***

Montrer que la fonction définie sur \mathbb{R}^2 par $f(x,y) = \sin x + y^2 - 2y + 1$ est \mathcal{C}^1 et qu'elle possède une infinité de points critiques.

Ces points critiques correspondent-ils à des extrema de f?

Exercice 9 ***

Soit f la fonction définie sur \mathbb{R}^3 par $f(x,y,z)=(x+y+z)\mathrm{e}^{-\frac{1}{6}(x^2+y^2+z^2)}$.

- 1. Montrer que f est \mathcal{C}^1 sur \mathbb{R}^3 et déterminer ses points critiques.
- 2. Montrer que pour tout $(x, y, z) \in \mathbb{R}^3$, $|x + y + z| \leq \sqrt{3}\sqrt{x^2 + y^2 + z^2}$.
- 3. En étudiant la fonction définie sur \mathbb{R}^+ par $g(t) = \sqrt{t}e^{-t/6}$, déterminer la nature des points critiques de f.

Exercice 10 $\star\star$

Soit f la fonction définie sur $\Omega =]0,1[\times]0,1[$ par $f(x,y) = \frac{1}{1-x} + \frac{1}{1-y} + \frac{1}{x+y}$.

- 1. Montrer que f est \mathcal{C}^2 sur l'ouvert Ω , et calculer ses dérivées partielles premières et secondes.
- 2. Déterminer les points critiques de f.
- 3. Montrer que f admet un extremum local sur Ω .

Exercice 11 **

Déterminer les extrema locaux des fonctions suivantes :

- 1. $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^3 + xy + y^3$.
- 2. $g: (\mathbb{R}^*)^2 \to \mathbb{R}, \ g(x,y) = 4xy + \frac{1}{x} + \frac{1}{y}$
- 3. $h: (\mathbb{R}_+^*)^2 \to \mathbb{R}, h(x,y) = x^2 + y^2 + \frac{1}{x+y}.$

Exercice 12 **

Soit $f(x,y) = x^2 + y^2 + 2xy + xy^3$.

- 1. Montrer que f est de classe \mathcal{C}^2 sur \mathbb{R}^2 et qu'elle admet un unique point critique.
- 2. Déterminer les valeurs propres de la hessienne en ce point critique. Peut-on conclure quant à la nature de ce point critique?
- 3. Étudier les signes de f(x,x) et f(x,-x), et conclure.

Exercice 13 **

Soit f la fonction définie sur \mathbb{R}^3 par $f(x, y, z) = x^2 + y^2 + z^2 - 2xyz$.

- 1. Justifier que f est de classe \mathcal{C}^2 , et calculer ses dérivées partielles d'ordre 1 et 2.
- 2. Montrer que f admet exactement cinq points critiques, dont le point (0,0,0).
- 3. Déterminer la matrice hessienne de f en (0,0,0), et en déduire que f possède un minimum local en (0,0,0). Est-ce un minimum global de f?
- 4. Pour chacun des autres points critiques, vérifier que 4 est valeur propre de la matrice hessienne, et déterminer si f admet ou non un extremum local en ce point.

Exercice 14 ***

Soit f la fonction définie sur l'ouvert $(\mathbb{R}_+^*)^2$ par $f(x,y) = x \ln y - y \ln x$.

- 1. Montrer que f est de classe C^1 et déterminer son gradient.
- 2. Soit φ la fonction définie sur \mathbb{R}_+^* par $\varphi(t) = \ln t t + \frac{1}{t}$. Montrer que si (x, y) est un point critique de f, alors $\varphi(\ln y) = 0$.
- 3. En étudiant le sens de variations de φ , montrer que f possède un unique point critique (x_0, y_0) .
- 4. Montrer que pour $\alpha \in [0, 1[, f(x_0 + \alpha, y_0 \alpha) = -f(x_0 \alpha, y_0 + \alpha)]$. f admet-elle un extremum local sur $(\mathbb{R}_+^*)^2$?

Exercice 15 ***

Soit $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : x^2 - 1 \leq y \leq 1 - x^2\}$, et soit $\mathcal{D}_0 = \{(x,y) \in \mathbb{R}^2 : x^2 - 1 < y < 1 - x^2\}$. On admet que \mathcal{D} est fermé, que \mathcal{D}_0 est ouvert, et que tous les deux sont bornés. Soit f la fonction définie sur \mathcal{D} par $f(x,y) = y^2 - x^2y + x^2$.

- 1. Justifier que f possède un maximum M et un minimum m.
- 2. Déterminer les points critiques de f sur \mathcal{D}_0 .
- 3. Étudier les fonctions $x \mapsto f(x, x^2 1)$ et $x \mapsto f(x, 1 x^2)$, et en déduire les valeurs de m et M.

Exercice 16 ***

Soit $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ et soit f la fonction définie sur \mathcal{D} par $f(x,y) = x^3 - 3x(1+y^2)$.

- 1. Justifier que f admet un minimum m et un maximum M sur \mathcal{D} .
- 2. Montrer que sur B(0,1), f n'admet pas de point critique. Que peut-on en déduire à propos de m et M?
- 3. En étudiant la fonction $t \mapsto f(\cos t, \sin t)$, déterminer les valeurs de m et M.

Exercices issus d'oraux

Exercice 17

(Oral 2008)

Soit f une fonction continue sur $\mathbb R$ et soit $g:\mathbb R^*\times\mathbb R\to\mathbb R$ définie par $g(x,y)=\frac{1}{x}\int_x^{xy}f(t)\,\mathrm dt.$

- 1. Montrer que la fonction g est prolongeable par continuité sur \mathbb{R}^2
- 2. La fonction ainsi prolongée est-elle de classe \mathcal{C}^1 ? de classe \mathcal{C}^2 ?

Exercice 18 ★★★★

(Oral 2011)

Déterminer les fonctions f de classe \mathcal{C}^2 sur $(\mathbb{R}_+^*)^2$ telles que

$$\forall (x,y) \in (\mathbb{R}_+^*)^2, \qquad x^2 \frac{\partial^2 f}{\partial x^2}(x,y) - y^2 \frac{\partial^2 f}{\partial y^2} = 0$$

On pourra poser $u = \frac{x}{y}$ et v = xy.

Exercice 19 ***

(Oral 2011)

Soit f une fonction de classe \mathcal{C}^2 sur \mathbb{R} et F définie par $F(x,y) = \int_{-x}^{y} e^{x+t} f(2x+t) dt$.

- 1. Montrer que F est de classe C^2 sur \mathbb{R} , on pourra poser un changement de variable.
- 2. Déterminer f pour que F soit solution de l'équation aux dérivées partielles $\frac{\partial^2 F}{\partial x^2} + 2\frac{\partial F}{\partial x} 4\frac{\partial^2 F}{\partial y^2} + F = 1$.

(Oral 2016)

Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = x^3 - 3x(1+y^2)$.

- 1. Étudier l'existence d'extréma de f.
- 2. Soit $D = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 \leq 2\}$. Étudier les extremas de f sur D.

Exercice 21 ***

(Oral 2015, 2016, 2018)

- 1. Soit $(x,y) \in \mathbb{R}^2$, justifier la convergence de l'intégrale $F(x,y) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} (t-x)^2 (t-y)^2 e^{-t^2} dt$
- 2. On donne

$$\int_{-\infty}^{+\infty} t^4 e^{-t^2} dt = \frac{3\sqrt{\pi}}{4}, \qquad \int_{-\infty}^{+\infty} t^2 e^{-t^2} dt = \frac{\sqrt{\pi}}{2}, \quad \text{et} \quad \int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$$

Montrer que, pour $(x,y) \in \mathbb{R}^2$, on a $F(x,y) = x^2y^2 + \frac{1}{2}(x^2 + y^2 + 4xy) + \frac{3}{4}$

3. Déterminer les points critiques de F et étudier leurs natures.